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Abstract

Background: Traditional selection in livestock and crops focuses on additive genetic values or breeding values of
the individuals. While traditional selection utilizes variation between individuals, differences between gametes
within individuals have been less frequently exploited in selection programs. With the successful implementation of
genomic selection in livestock and crops, estimation and selection for gametic variation is becoming possible.

Results: The gamevar.f90 software is designed to estimate individual-level variance of genetic values of gametes for
complex traits in large populations. The software estimates the (co)variances of gametic diversity as well as other diversity
parameters that are useful for selection programs and mating designs. The calculation is carried out chromosome by
chromosome and can be easily parallelized. The gamevar.f90 program is written in Fortran with efficient computing
algorithms in a user-friendly software package with easily-handled input and output files. Finally, we applied the program
to estimate gametic variance for hundreds of bulls for lifetime net merit, productive life, and livability. The RPTA (relative
predicted transmitting ability), assuming a future selection intensity (if) of 1.5, showed larger variance than GEBV/2,
indicating that greater future genetic gains can be obtained using an index that includes gametic variances. We also used
the relative coefficient of variation to estimate with 95% confidence the sample sizes required to observe 90% variability
of the progeny for lifetime net merit (or to allow at maximum 10% of change in the EBV predicted from progeny data).

Conclusions: Collectively, we develop an efficient computer program package, gamevar.f90, for estimating gametic
variance for large numbers of individuals. The novel information on gametic variation will be useful in future animal and
crop breeding programs.
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Background
Traditionally, selective breeding programs and mating de-
signs are based only on the estimated breeding values (EBVs)
of individuals, aiming for the genetic improvement of addi-
tive merit. The EBV represents the sum of additive effects of
all genes. The individual’s EBV is an average of its parents’
EBVs plus an independent effect from Mendelian sampling
caused by random recombination and separation of homolo-
gous chromosomes [1]. Mendelian sampling variability dif-
fers across individuals and can be estimated as a function of
the binomial transmission probabilities of DNA variants
from individuals to gametes and their genetic effects [2].
Therefore, the variability generated by Mendelian sampling
and meiotic recombination can be assessed from genomic

data. Initially, Selgeke et al., [3] estimated the variance of the
EBVs within groups of offspring by simulating virtual gam-
etes of individuals. Subsequently, Bonk et al. [4] proposed an
explicit formula to obtain this variation of the within-family
EBVs. More recently, based on quantitative trait loci (QTL)
effects in the gametes, Santos et al. [2] proposed the variance
of the gametic diversity (σ2gamete ). Assuming a large number

of QTL are transmitted from an individual to its gametes,
the genetic values of all possible gametes will follow a normal
distribution with variance equal to the σ2gamete , and the sum

of variance of two matting individuals is equal to the variance
of future progeny (also known as Mendelian Sampling vari-
ance) [2]. These authors then evaluated the predictability by
genomic models in a dataset containing only markers or with
markers and QTLs, obtaining medium to high predictability.
When the solution of the genomic models is used, the
σ2gamete is partly like what was proposed by Bonk et al. [3],
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with differences only in the central probability matrix. Des-
pite σ2gamete represents the capture of the variation of the ef-

fects of QTLs on gametes, in the specific case, it is also
equivalent to the variance of the gametes breeding values,
whose average is equal to EBV/2.
The gametic variance σ2gamete is a useful tool for identify-

ing individuals that are more likely than their peers to pro-
duce gametes and thus progeny with extreme breeding
values. In addition, gametic variance can be combined
with breeding value into a new selection index, RPTA
(relative predicted transmitting ability), which selects for
genetic diversity to improve genetic gain in the long term
[2]. The RPTA is a measure with biological interpretation,
whose value represents the expected difference (on aver-
age) of the selected gametes, in relation to the genetic base
of the population, when a certain selection intensity is ap-
plied to all gametes of an individual. The selection with
RPTA is projected in the variation of gametes (as the pro-
portion of selected gametes or selection intensity); how-
ever, in practice, the real selection is realized in the
variation of the future progeny. Based on this, Bijma et al.
[5] recommended an index with linear approximation
with the within-family standard deviation. However, this
linearization assumes that the σ2gamete of the sire and dam

is the same, making this index less accurate for the selec-
tion of the future progeny. This assumption of equality
can be avoided with our software that can easily estimate
the σ2gamete of the animals to be selected and mated.

The σ2gamete can be used to estimate the coefficient of

relative variation (CRV) that measures the variability in
the percentage of additive genetic values transmitted
from an individual to its gametes (EBV/2), which is use-
ful in breeding and progeny testing programs to estimate
the optimal number of progeny needed to realize the ex-
pected gametic variability [2]. This parameter can be
used and interpreted as the traditional coefficient of
variation, which, however, has no limitation for negative
values and zeros in the denominator. Santos et al. [2]
proposed the CRV that allows assessing the variation as-
sociated with EBV. In addition, the CRV may be more
suitable than the traditional coefficient of variation (it al-
lows values greater than 100%) to estimate sample sizes
needed to realize certain levels of gametic variance [6].
In this study, we implemented our recently developed

method into the gamevar.f90 software that efficiently esti-
mates gametic variance for complex traits in large popula-
tions. Basically, gamevar.f90 calculates individual-level
genetic statistics per chromosome such as EBVs, (co)vari-
ances of gametic diversity, and coefficients of relative vari-
ation, as well other genetic components useful to estimate
the relative selection index (such as RPTA) for designing
selective mating programs and progeny tests.

Implementation
Method
The gamavar.90 program estimates the (co)variance of all
possible gametic values that can be generated from an indi-
vidual genome and meiosis process using data on phased
genotype, allelic substitution effect, and recombination rate
between variants. Since only the heterozygous loci of an in-
dividual will contribute to σ2gamete, the variance of two bial-

lelic loci, j and k, of an individual i, with the true allele
substitution effect αj and αk, can be calculated from the
variance of a binomial distribution as σ2½ jþk� ¼ σ2j þ σ2k þ 2

σjk , where σ2j ¼ npqα2j ; σ
2
k ¼ npqα2k , σij = n(pjk − pjpk)αjαk,

and p = q = 0.5 and n = 1. Thus, the total variance is com-
puted across all N heterozygous loci for trait x as σ2Xgamete

¼ ½α̂x1 … α̂xN �P α̂x1 … α̂xn½ �0 and the covariance be-
tween the traits x and y can be computed using the same
matrix P (as in Santos et al. [2]), and the allele substitution

effect of the two traits as in (Bonk et al. [4]), as σXYgamete

¼ α̂x1 … α̂xN½ �P α̂y1 … α̂yN
� �0

, where α̂ is the allele
substitution effect estimated with genomic model. The
(co)variance matrix of the Mendelian transmission prob-
abilities, P, with only the heterozygous loci can be repre-

sented as P ¼
0:25 … al1Nð− cM1N

200 þ 0:25Þ
⋮ ⋱ ⋮

alN1ð− cMN1
200 þ 0:25Þ … 0:25

2

4

3

5,

where aljk is a phase indicator for loci j and k, with value 1
when both loci have the reference allele on the same
chromosome and − 1 otherwise; cMjk is the genetic dis-
tance between the 2 loci (in centimorgans). Loci with gen-
etic distances greater than 50 cM on the same
chromosome, are assumed to be independent. If the re-
combination rates between the SNP markers are directly
used instead of cM, the off-diagonal elements of the P

matrix will be Pjk ¼ aljkð− ratejk
2 þ 0:25Þ when the recom-

bination rate is < 0.5; and Pjk = 0 when the rate is ≥0.5.
The gamevar.f90 software also calculates the

chromosome-level statistic HOM =
PNHom

i α2i (sum of
squared effects of the homozygous loci from an indi-
vidual) and coefficient of relative variation (CRV),
CRV i ¼ σgameteffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:5
PNHom

i
α2i þσ2gamete

q , as described by Santos

et al. [2]. The statistics σ2gamete and CRV include all

chromosomes used in the calculation of genomic
breeding values. Gamevar.f90 calculates these statistics
for each of the chromosomes separately. Math for the
sex chromosomes could differ by sex of parent and
progeny but we treated all chromosomes as auto-
somes. The total statistics can be obtained as a simple
total across the chromosomes. Details on these vari-
ability statistics and algorithms have been described
in Santos et al. [2].
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The gamevar.f90 program directly uses allele effects of
the markers estimated from existing genomic evalua-
tions. Since the allele effects have been estimated, game-
var.f90 can also calculate the genomic breeding values (it
computes by chromosomes) according to Meuwissen
et al. [7] as M[α1…αN]′, where M is a matrix of geno-
types coded in − 1,0 and 1 for aa, Aa and AA, with rows
corresponding to individuals and column to markers.

Input and output files
A parameter file is required to run gamevar.f90. The par-
ameter file provides some user-specified options, including
file names. The program automatically performs an initial
check of the parameters from the input file, such as the
options defined by users, initial data descriptions, warn-
ings, stoppings, cases of incorrect inputs, and output mes-
sages. Parameters are annotated in more details in the
user’s manual (Additional File 1; https://github.com/djor-
dand2008/gamevar.f90). Gamevar.f90 also requires some
pre-processed files as input, such as allelic substitution ef-
fects and phased genotypes, as well as the chromosome in-
formation with recombination rate/genetic distance
between markers. The program can optionally produce up
to five easily-handled output files in text format for the
(co)variance of gametic diversity, EBV, CRV and HOM by
individuals. To reduce memory required by the program,
output files are written during the analyses so that mem-
ory can be reused. In additional to the manual, ready-to-
run example files are also provided in the package.

Efficiency
The software is written in Fortran with the intrinsic library
(Additional File 2). Executable files are currently available
for the Linux platform (Additional File 3). It is free software
with open-access code that is portable to other operating
systems for compiling. The standard compilers for Fortran
90 and 95, such as gfortran, are recommended for use. In
an example run, the computing time for analyzing eight
traits (lifetime net merit, productive live, somatic cell score,
daughter pregnancy rate, heifer conception rate, cow con-
ception rate, livability, and early calving) with 4340 Markers
on chromosome 1 and 100 bulls was around 4 to 5min or
less than 3 s per individual on an Intel Xeon X7560 server,
running at 2.27GHz with 660GB RAM. A maximum of
0.15GB of RAM was used for the example run.

Results
Using gamevar.f90, we estimated gametic variance and other
statistics of lifetime net merit for the 100 top Holstein bulls
in the U.S. dairy industry. There is a considerable amount of
variation in gametic diversity across the top 100 bulls (Fig. 1),
which indicates the potential of applying gametic selection
to the dairy cattle population. The covariances of gametic
diversity were all positive between lifetime net merit and
productive life, indicating that gametic selection in lifetime
net merit could improve productive life. However, nine bulls
showed negative covariances of lifetime net merit with liv-
ability, meaning that not all top bulls for lifetime net merit
can improve livability in the population. In such cases, we

Fig. 1 Histogram of variance of gametic diversity for lifetime net merit (left) and covariance of gametic diversity between lifetime net merit and
productive life (middle) and livability (right) using the top 100 bulls for lifetime net merit
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can use gametic selection to identify bulls which will im-
prove both traits simultaneously. The RPTA (GEBVi/2 + σga-
mete _ i ∗ if), assuming a future (gametic) selection intensity (if)
of 1.5, for the 100 best bulls for lifetime net merit, showed
greater variance and greater density beyond the center of its
distribution compared with the GEBV/2, indicating that
greater future genetic gains (represented by the means of
the criteria) can be obtained with this index (density plot in
Fig. 2). Evidently, greater gains can be achieved if a small
number of bulls with extreme values (the left side of the
density plot) were selected within this group (by increasing
the selection intensity). Using the relative coefficient of vari-
ation of lifetime net merit, we estimated with 95% confi-
dence the number of progeny required to observe 90%
variability in the progeny (or to allow at maximum 10% of
change in the EBV predicted using only progeny data, such
as a progeny test). The number of progeny was calculated

based on Santos et al. [2], as n ¼ ð1:96Þ2XðCRV iÞ2
ð0:1Þ2 . Thus, the

histogram in the second part of Fig. 2 shows that the num-
ber expected to realize a reasonable percentage of variation
in gametes, ranged from 80 to 130. This number can be es-
pecially important for planning matings considering accur-
acy and cost for progeny production.

Conclusions
Gametic diversity is an important source of genetic variation
to be explored in selective breeding programs, which can be
beneficial for both improving genetic gains and maintaining
genetic diversity over the long term. Gamevar.f90 is a user-
friendly tool for estimating the variance of gametic diversity
in large-scale genomic data of complex traits in livestock
and crop populations. Gamevar.f90 uses efficient algorithms,

is easy to use, and takes advantage of multiple processors to
achieve good computing performance in general. The out-
put from gamevar.f90 will be useful for improving selection
strategies, mating designs, and progeny tests.

Availability and requirements
Project name: gamevar.f90.
Project home page (github page): https://github.com/

djordand2008/gamevar.f90 Operating system(s): Linux
and Unix Programming language: Fortran Other re-
quirements: None License: GPL-v3 Any restrictions to
use by non-academics: No (free software).

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12859-020-3417-x.

Additional file 1. Manual of Gamevar.f90. A word document describing
the manual of the software.

Additional file 2. Source code of Gamevar.f90. An Fortran source code
file for gamevar.f90.

Additional file 3. Executable file of Gamevar.f90. An executable file for
linux system.
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CRV: Coefficient of relative variation; EBV: Estimated breeding value;
GEBV: Estimated genomic breeding value; QTL: Quantitative trait locus;
RPTA: Relative predicted transmitting ability; SNP: Single nucleotide
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